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Abstract. Recent advances in both computational hardware and multidisciplinary science have given
rise to an unprecedented level of complexity in scientific simulation software. This paper describes an
ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use
of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the
Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative
example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for
future research are also described briefly.

1. Introduction
In recent years, two accomplishments have fueled an upsurge in the complexity of scientific simulation
software. First, rapid growth in computational capability based on increasingly intricate hardware
architectures is driving computational scientists to develop new, more complex algorithms to make best
use of the systems. Second, scientific advances are yielding new ways of approaching challenging
problems, offering better efficiency, accuracy, or fidelity. Code complexity and reliance on software
are increasing as essential consequences of both of these accomplishments. Computational science
software is at growing risk of becoming a victim of its own success, increasing in complexity until it
becomes unmanageable, unmaintainable, and incomprehensible. This inherent complexity impacts the
productivity of developers and, if left alone, ultimately may cap the rate of progress in creating and
improving scientific software.

Component-based software engineering (CBSE) is an approach developed in other areas of computing
as a means of addressing similar problems of complexity. Units of software functionality are
encapsulated as components which interact with each other only through well-defined interfaces. The
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actual implementation is opaque to other components, and application composition is archived through
providing and using these interfaces. This approach reduces complexity by allowing developers to
focus on the internals of the small set of components on which they are working, while users of
components need only be concerned with component interfaces. This separation of concerns is useful in
the collaborative or community-oriented software development that increasingly characterizes modern
high-end simulations. Component-based environments typically offer a “plug and play” approach to
composition of components into applications, in which components offering the same interface are
interchangeable, allowing easy swapping of components to test new algorithms, tune for performance,
and other reasons. To the extent that interfaces for certain functionality are agreed to by communities of
users, components can more easily be reused across multiple applications.

2. The CCA in Brief
Since 2001, the SciDAC-funded Center for Component Technology for Terascale Simulation Software
(CCTTSS) has led a program of research and development into the formulation, roles, and use of
component technologies in high-performance science computing.

A central result of this effort has been the Common Component Architecture (CCA) [1, 2], a
specification for a component environment designed to meet the needs of modern high-performance
computational science. The basic features of the CCA’s design that distinguish it from commodity
component architectures widely used in non-scientific applications include:

• High Performance: Minimize performance penalties due to componentization and allow HPC-
friendly implementations.

• Parallel and Distributed Computing: Support local, parallel, and distributed computing
seamlessly. However, the CCA does not impose a particular parallel programming model or
distributed computing environment on the user.

• HPC Language Support, Data Types, and Platforms: In particular, support for Fortran, multi-
dimensional arrays and complex numbers, and computer platforms that do not run Java and/or
Microsoft Windows.

• Easy Reuse of Legacy Software: Minimize the effort required to incorporate existing software into
the CCA environment.

CCA components are loaded by a framework and assembled into an application by connecting
interfaces that express a requirement for a certain functionality (uses ports in CCA terminology)
with implementations of that functionality (provides ports), and the application can then be executed.
Application composition can be scripted or accomplished interactively with a GUI. Instantiation and
connection of components can even be done under program control by a main program or a special
component. The CCA-specified “BuilderService” interface allows applications to dynamically adapt,
changing out components on-the-fly to improve performance or numerics as a simulation progresses.

3. CCA Accomplishment Highlights
Productivity and Performance Improvements. CCA technology is intended to change the way scientific
software is developed and used, and to improve the productivity of both developers and users. Early-
adopters of the CCA have realized these benefits. The SciDAC Center for Reacting Flow Science [3]
found the CCA approach greatly increases their productivity and performance when incorporating
cutting-edge discretization ideas into their code [4, 5]. Similarly, the quantum chemistry community
has realized order-of-magnitude performance improvements [6], and rapidly benchmarked alternative
numerical implementations [7]. Tools to support the automated generation and building of CCA wrappers
for legacy codes have been incorporated in the open-source Eclipse software-productivity environment.
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CCA Technologies. Emphasizing the importance of community-defined, “common” software interfaces
to increasing the sharing and reuse of scientific codes is a hallmark of CBSE. The CCA is a catalyst for
such efforts in several application domains.

Along with the core CCA component model defined by its specification, reference implementations
of the technologies and tools associated with the CCA environment exist. These include the Scientific
Interface Definition Language (SIDL) [8], the Babel compiler [9], and Ccaffeine [10]. SIDL provides
an implementation-language neutral mechanism for specifying component Application Programming
Interfaces (APIs). Babel, the SIDL compiler, makes CCA components interoperable across languages
and CCA frameworks. Ccaffeine is a reference framework that supports parallel application composition
from CCA components for execution in massively parallel environments. A number of alternative CCA
framework implementations also exist that target distributed computing and hybrid approaches [11–13].

CCA technology is being evaluated or used in a number of communities. Numerous studies
demonstrate small overheads of the CCA environment that are easily amortized in typical scientific
applications. Eleven application areas are currently experimenting with the technology, including
biomedical engineering, climate modeling, combustion simulation, computational chemistry, and fusion
energy. Companies such as Cray, Fluent, IBM, MSC.Software, and Tech-X have expressed interest in or
are using CCA.

CCA technologies have also impacted a number of standards efforts. SIDL is being used for interface
standardization in areas such as meshing software, linear and nonlinear solvers, and computational
chemistry. The design of the CCA has influenced the Business Process Execution Language (BPEL),
a web services work-flow specification language used by Microsoft, IBM, BEA, SAP, and other major
corporations. The Chasm array-interoperability API used in Babel was accepted by the J3 standard
committee to be part of the next Fortran standard following Fortran 2003.

Reusable Scientific Components. In addition to simple component examples and hands-on exercises
available in the CCA tutorial materials, a growing set of components has been made available on the
web since August 2003. Many of these components are used in the scientific applications mentioned
elsewhere in this paper. The CCA component toolkit is based on widely used software packages,
including: ARMCI (one-sided messaging), CUMULVS (visualization and parallel data redistribution),
CVODE (integrators), DRA (parallel I/O), Epetra (sparse linear solvers), Global Arrays (parallel
programming), GrACE (structured adaptive meshes), netCDF and parallel netCDF (input/output), TAO
(optimization), TAU (performance measurement), and TOPS (linear and nonlinear solvers).

4. Example: CCA Use in Quantum Chemistry
Central to many public, industrial and scientific endeavors, chemistry is a ubiquitous science in which
simulation plays an indispensable role. Developers of two major quantum chemistry (QC) packages,
MPQC [14] and NWChem [15], are using the Common Component Architecture to transform the way
QC software is developed and used.

In a field where lack of software interoperability frequently frustrates collaboration, MPQC and
NWChem developers teamed with experts in optimization to study the applicability of state-of-the-art
optimization algorithms to the determination of molecular structures. Interchangeable CCA-compliant
components were created from MPQC and NWChem (the former written in C++, the latter in Fortran 77)
for the evaluation of molecular energies, gradients, and Hessians. These were coupled with the TAO [16]
optimization component and supporting interchangeable linear algebra components derived from Global
Arrays (GA) [17] or PETSc [18]. This novel software enabled a study that demonstrated the benefits of
new limited memory variable metric (LMVM) optimization approaches to QC [7], with reductions of as
much as 42% in execution time.

The coarse-grained interchangeability of functionality between QC packages demonstrated in this
study represents another important benefit of the component approach. By agreeing on common
interfaces for smaller units of functionality within the codes, it becomes possible for one code to take
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advantage of functionality present only in the other code to produce new capabilities not present in
either code separately. The current work focuses on enhancing the capabilities in the evaluation of
molecular properties. Common interfaces, agreed to by larger groups, can form the basis for turning
many standalone packages into a community code base, allowing faster and easier software development,
and ultimately, more and better scientific progress. This is beginning to happen in the QC community,
as the developers of another package, GAMESS [19], have recently also joined the molecular properties
effort.

Figure 1. Scalability of Numerical Hessian.

NWChem developers are also using the CCA to increase the parallel scalability of certain types of
calculations. For many QC methods, Hessians (second derivatives of the energy) must be calculated by
numerical differentiation of gradients, which, in turn, may be obtained from either analytic or numerical
differentiation of the energy. Using CCA and GA, NWChem developers were able to implement a
computational scheme that provides three different levels of parallelism (Figure 1): the top level driver
for the Hessian calculation subdivides the available processors to perform multiple gradient calculations
simultaneously. By dynamically creating and managing the processor groups to carry out the calculation,
available computational resources can be used much more effectively. The CCA and GA-based multi-
level implementation (MCMD) yields a factor of 10 speedup (Figure 1) [6] in NWChem. The Hessian
is perhaps the simplest example of this type of approach. The multilevel scheme opens the door to a
rich set of algorithms that require a dynamic architecture to enable advancement in large-scale chemical
simulations.

5. Future Research
The CCA goal is to accelerate the rate and scope of scientific discovery by managing the complexity
inherent in leadership-class scientific computing applications. Future research directions are prioritized
by sources of complexity that constrain and prolong software solutions. Included is complexity
derived from hardware, software and the consequent need to build community software. Because next
generation simulations will incorporate federations of codes representing multiple kinds and scales of
physics simulations, a wide range of parallel coupling services need to be incorporated to automate
discovery/attachment, parallel data sharing, and interpolation schemes in space and time, with flux
conservation constraints, units conversion, etc. Advanced programming models not only make language
interoperability easier, they can impart semantic information that could be leveraged to automatically
enforce proper code usage [20]. Generally referred to as Computational Quality of Service (CQoS),
information contained in frameworks and programming models regarding an application’s structure,
algorithmic characteristics, and performance history can be exploited to optimize execution dynamically.
Prototypes exist for hybrid algorithms [21] and automated performance tuning [22].
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